Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Microb Pathog ; 190: 106638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574829

RESUMO

Autophagy plays an important role in the lifecycle of viruses. However, there is currently a lack of systematic research on the relationship between Infectious Bronchitis Virus (IBV) and autophagy. This study aims to investigate the impact of IBV on autophagy and the role of autophagy in viral replication. We observed that IBV infection increased the expression of microtubule-associated protein 1 light chain 3, a marker of autophagy, decreased the expression of sequestosome 1, and led to elevated intracellular LC3 puncta levels. These findings suggest that IBV infection activates the autophagic process in cells. To investigate the impact of autophagy on the replication of IBV, we utilized rapamycin as an autophagy activator and 3-methyladenine as an autophagy inhibitor. Our results indicate that IBV promotes viral replication by inducing autophagy. Further investigation revealed that IBV induces autophagosome formation by inhibiting the mTOR-ULK1 pathway and activating the activity of vacuolar protein sorting 34 (VPS34), autophagy-related gene 14, and the Beclin-1 complex. VPS34 plays a crucial role in this process, as inhibiting VPS34 protein activity enhances cell proliferation after IBV infection. Additionally, inhibiting VPS34 significantly improves the survival rate of IBV-infected chicks, suppresses IBV replication in the kidney, and alleviates tracheal, lung, and kidney damage caused by IBV infection. In summary, IBV infection can induce autophagy by modulating the mTOR/ULK1 signaling pathway and activating the VPS34 complex, while autophagy serves to promote virus replication.


Assuntos
Autofagia , Galinhas , Classe III de Fosfatidilinositol 3-Quinases , Vírus da Bronquite Infecciosa , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Galinhas/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Sirolimo/farmacologia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Linhagem Celular , Doenças das Aves Domésticas/virologia , Autofagossomos/metabolismo , Autofagossomos/virologia , Chlorocebus aethiops , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
2.
Bioorg Med Chem ; 102: 117657, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428068

RESUMO

The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.


Assuntos
Antineoplásicos , Glioblastoma , Imunoconjugados , Humanos , Animais , Camundongos , Cetuximab/farmacologia , Preparações Farmacêuticas , Glioblastoma/metabolismo , Anticorpos , Antineoplásicos/uso terapêutico , Receptores ErbB , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Med Virol ; 96(3): e29498, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436148

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
4.
PhytoKeys ; 238: 231-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445106

RESUMO

Ophiorrhizareflexa, a new species from Guangxi, China, is described and illustrated in this study. It is morphologically similar to O.alatiflora due to the branched inflorescence, distylous flowers and the tubular-funnelform corolla with five longitudinal wings. The new species can be distinguished from O.alatiflora by its erect inflorescence, its smaller and equal-sized calyx lobes 0.5-0.7 mm long, its corolla tubes winged to the middle and the wings straight and its strongly reflexed corolla lobes at anthesis. Ophiorrhizareflexa is assessed as least concern (LC) according to IUCN Categories and Criteria.

5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(1): 19-25, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38246173

RESUMO

Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.


Assuntos
Bacteriófagos , COVID-19 , Animais , Camundongos , SARS-CoV-2/genética , Vacinas Sintéticas/genética , Genes Reporter , Camundongos Endogâmicos BALB C
6.
Nat Prod Res ; : 1-4, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189351

RESUMO

Recently, andrographolide, kaempferol, maslinic acid, rutin, and schaftoside have been identified as potent SARS-CoV-2 main protease (Mpro) inhibitors via molecular docking studies. However, no comprehensive in vitro testing of these compounds against Mpro has been conducted. In this study, we rigorously evaluated the in vitro inhibition of Mpro by these compounds using combinational experiments, including fluorescence resonance energy transfer (FRET), fluorescence polarization (FP), and dimerization-dependent red fluorescent protein (ddRFP) assays. Our data revealed that these compounds are not Mpro inhibitors based on the results from a set of in vitro assays. These results suggest that an efficient combination of a molecular docking approach and an experimental assay is essential for the discovery of Mpro inhibitors in the future.

7.
Microsyst Nanoeng ; 10: 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283382

RESUMO

In this work, we propose porous fluororubber/thermoplastic urethane nanocomposites (PFTNs) and explore their intrinsic piezoresistive sensitivity to pressure. Our experiments reveal that the intrinsic sensitivity of the PFTN-based sensor to pressure up to 10 kPa increases up to 900% compared to the porous thermoplastic urethane nanocomposite (PTN) counterpart and up to 275% compared to the porous fluororubber nanocomposite (PFN) counterpart. For pressures exceeding 10 kPa, the resistance-pressure relationship of PFTN follows a logarithmic function, and the sensitivity is 221% and 125% higher than that of PTN and PFN, respectively. With the excellent intrinsic sensitivity of the thick PFTN film, a single sensing unit with integrated electrode design can imitate human skin for touch detection, pressure perception and traction sensation. The sensing range of our multimodal tactile sensor reaches ~150 Pa, and it exhibits a linear fit over 97% for both normal pressure and shear force. We also demonstrate that an electronic skin, made of an array of sensing units, is capable of accurately recognizing complex tactile interactions including pinch, spread, and tweak motions.

9.
Int J Biol Macromol ; 261(Pt 1): 129785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286372

RESUMO

Viral respiratory infections are major human health concerns. The most striking epidemic disease, COVID-19 is still on going with the emergence of fast mutations and drug resistance of pathogens. A few polysaccharide macromolecules from traditional Chinese medicine (TCM) have been found to have direct anti-SARS-CoV-2 activity but the mechanism remains unclear. In this study, we evaluated the entry inhibition effect of Lycium barbarum polysaccharides (LBP) in vitro and in vivo. We found LBP effectively suppressed multiple SARS-CoV-2 variants entry and protected K18-hACE2 mice from invasion with Omicron pseudovirus (PsV). Moreover, we found LBP interfered with early entry events during infection in time-of-addition (TOA) assay and SEM observation. Further surface plasmon resonance (SPR) study revealed the dual binding of LBP with Spike protein and ACE2, which resulted in the disruption of Spike-ACE2 interaction and subsequently triggered membrane fusion. Therefore, LBP may act as broad-spectrum inhibitors of virus entry and nasal mucosal protective agent against newly emerging respiratory viruses, especially SARS-CoV-2.


Assuntos
COVID-19 , Lycium , Humanos , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Ligação Proteica
10.
Opt Express ; 31(22): 37325-37335, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017864

RESUMO

Spiking Neural Networks, also known as third generation Artificial Neural Networks, have widely attracted more attention because of their advantages of behaving more biologically interpretable and being more suitable for hardware implementation. Apart from using traditional synaptic plasticity, neural networks can also be based on threshold plasticity, achieving similar functionality. This can be implemented using e.g. the Bienenstock, Cooper and Munro rule. This is a classical unsupervised learning mechanism in which the threshold is closely related to the output of the post-synaptic neuron. We show in simulations that the threshold characteristics of the nonlinear effects of a microring resonator integrated with Ge2Sb2Te5 demonstrate some complex dependencies on the intracavity refractive index, attenuation, and wavelength detuning of the incident optical pulse, and exhibit class II excitability. We also show that we are able to modify the threshold power of the microring resonator by the changes of the refractive index and loss of Ge2Sb2Te5, due to transitions between the crystalline and amorphous states. Simulations show that the presented device exhibits both excitatory and inhibitory learning behavior, either lowering or raising the threshold.

11.
J Pharm Pharmacol ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007392

RESUMO

OBJECTIVES: Inflammatory cytokine secretion and gut microbiota dysbiosis play crucial roles in ulcerative colitis. In this research, the protective effects of peimisine on colitis mice were investigated. METHODS: The protective effects were evaluated by the disease activity index, colonic length, hematoxylin-eosin, and AB/PAS Staining. The protective mechanisms were analyzed by ELISA, Western-blot, immunohistochemistry staining, immunofluorescence staining, and 16S rRNA gene analysis. KEY FINDINGS: The results showed that peimisine treatment could reduce the disease activity index, prevent colonic shortening, and alleviate colon tissue damage. Peimisine treatment also decreased the levels of MCP-1, IL-1ß, IL-6, IFN-γ, TNF-α and affected macrophage polarization and Th17/Treg cell balance by downregulating the expression of jak1/2, p-jak1/2, stat1/3, and p-stat1/3. Moreover, peimisine treatment significantly increased the abundances of beneficial microbes (e.g. Ruminococcaceae UCG-014 and Lachnospiraceae_NK4A136_group) and decreased the abundances of harmful microbes (e.g. Bacteroides and Escherichia). CONCLUSIONS: Peimisine can ameliorate colitis by inhibiting Jak-Stat signaling pathway, reversing gut microbiota alterations, suppressing macrophage M1 polarization, maintaining the Th17/Treg cell balance, and reducing sustained inflammatory cytokines-related inflammatory injury.

12.
Biomed Pharmacother ; 167: 115509, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722193

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the whole world, with little improvement in the 5-year survival rate due to the occurrence of chemoresistance. With the increasing interests in tumor immune microenvironment, immunogenic cell death (ICD)-induced chemotherapy has shown promising results in enhancing sensitivity to immune checkpoint inhibitors (ICI) and improving the efficiency of tumor immunotherapy. This review summarizes the role of key ICD biomarkers and their underlying molecular mechanisms in HNSCC chemoresistance. The results showed that ICD initiation could significantly improve the survival and prognosis of patients. ICD and its biomarker could also serve as molecular markers for tumor diagnosis and prognosis. Moreover, key components of DAMPs including CALR, HGMB1, and ATP are involved in the regulation of HNSCC chemo-sensitivity, confirming that the key biomarkers of ICD can also be developed into new targets for regulating HNSCC chemoresistance. This review clearly illustrates the theoretical basis for the hypothesis that ICD biomarkers are therapeutic targets involved in HNSCC progression, chemoresistance, and even immune microenvironment regulation. The compilation and investigation may provide new insights into the molecular therapy of HNSCC.

13.
Adv Healthc Mater ; 12(28): e2301343, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586109

RESUMO

Premetastatic niche (PMN) is a prerequisite for tumor metastasis. Destruction of PMN can significantly suppress the tumor metastasis. Bone marrow-derived cells are usually recruited into the premetastatic organs to support PMN formation, which can be orchestrated by tumor-derived secreted factors. Neutrophils can chemotactically migrate towards the inflammatory sites and consume tumor-derived secreted factors, capable of acting as therapeutic agents for a broad-spectrum suppression of PMN formation and metastasis. However, neutrophils in response to inflammatory signals can release neutrophil extracellular traps (NETs), promoting the tumor metastasis. Herein, live neutrophils are converted into dead neutrophils (C NE) through a quick-frozen process to maintain PMN-targeting and tumor-derived secreted factor-consuming abilities but eliminate NET-releasing shortcomings. Considering macrophages-regulated remodeling of the extracellular matrix in PMN, bacterial magnetosomes (Mag) are further hitchhiked on the surface of C NE to form C NEMag , which can repolarize macrophages from M2 to M1 phenotype for further disruption of PMN formation. A series of in vitro and in vivo assessments have been applied to confirm the effectiveness of C NEMag in suppression of PMN formation and metastasis. This study presents a promising strategy for targeted anti-metastatic therapy in clinics.


Assuntos
Armadilhas Extracelulares , Magnetossomos , Neoplasias , Humanos , Neutrófilos , Fenótipo , Neoplasias/patologia
14.
Opt Lett ; 48(16): 4332-4335, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582025

RESUMO

Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn the transfer function of a single fiber (G652 or G655) span with a length of 80 km and successfully emulate long-haul optical transmission systems by cascading multiple NNSpans, which gives remarkable prediction accuracy, even over a transmission distance of 1000 km. Even when trained without erbium-doped fiber amplifier (EDFA) noise, NNSpan performs quite well when emulating the systems affected by EDFA noise. An optical bandpass filter can optionally be added after EDFA, making the simulation more flexible. Comparison with the SSFM shows that NNSpan has a distinct computational advantage, with the computation time reduced by a factor of 12. This method based on NNSpan could be a supplementary option for optical transmission system simulations, thus contributing to system designs as well.

15.
Biomaterials ; 301: 122258, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523792

RESUMO

Many clinical trials of kinesin spindle protein (KSP) inhibitors have failed due to issues such as high toxicity and a short circulation half-life in vivo. To address the limitations of current KSP inhibitors and thus broad its use in antitumor therapy, this study applied antibody-drug conjugate (ADC) technology to the KSP inhibitor SB-743921, which was coupled with the HER2-specific antibody trastuzumab using a cathepsin B-dependent valine-alanine (Val-Ala, VA) dipeptide-type linker to generate H2-921. Ex vivo and in vivo analyses of H2-921 showed an increased half-life of SB-743921 and prolonged contact time with tumor cells. Furthermore, H2-921 induced apoptosis and incomplete autophagy in HER2-positive cells. In the in vivo analyses, H2-921 had significant tumor-targeting properties, and tumor inhibition by H2-921 was greater than that by traditional KSP inhibitors but similar to that by the positive control drug T-DM1. In conclusion, this study describes a novel application of ADC technology that enhances the antitumor effects of a KSP inhibitor and thus may effectively address the poor clinical efficacy of KSP inhibitors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Cinesinas/metabolismo , Trastuzumab , Neoplasias/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
16.
Mol Carcinog ; 62(8): 1213-1227, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37144838

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common head and neck squamous cell carcinomas (HNSCC) globally. Its incidence rate is rapidly increasing, and its 5-year survival rate remains at 50%, despite advances in medical science. Trigger transposable element-derived 1 (TIGD1) has been found to be upregulated in various cancer types. However, its biological function in OSCC requires further investigation. We searched the Cancer Genome Atlas database using CIBERSORT and TIMER 2.0 to predict the significance of TIGD1 and evaluate its effect on immune cell infiltration. Gene set enrichment analysis was performed to determine the biological functions of TIGD1. Gain/loss of function techniques were used to explore the biological behavior of TIGD1 in Cal27 and HSC4 cells. Finally, flow cytometry was used to detect dendritic cell markers in an OSCC and dendritic cell co-culture model. Our results show that TIGD1 is upregulated significantly in OSCC and is closely associated with tumor progression and prognosis. TIGD1 functions as an oncogene by increasing cells proliferation, inhibiting apoptosis, promoting cell invasion and migration. TIGD1 is also involved in tumor immune cell infiltration. Its overexpression can inhibit dendritic cell maturation, leading to immune suppression and tumor progression. High TIGD1 expression, which promotes OSCC progression, might be related to decreased dendritic cell maturation and activation. These findings suggest that TIGD1-specific small interfering RNA synthesized in vitro could be a new target for OSCC immunotherapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Elementos de DNA Transponíveis , Linhagem Celular Tumoral , Oncogenes , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
17.
Front Plant Sci ; 14: 1111680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223818

RESUMO

The digestibility of soybean meal can be severely impacted by trypsin inhibitor (TI), one of the most abundant anti-nutritional factors present in soybean seeds. TI can restrain the function of trypsin, a critical enzyme that breaks down proteins in the digestive tract. Soybean accessions with low TI content have been identified. However, it is challenging to breed the low TI trait into elite cultivars due to a lack of molecular markers associated with low TI traits. We identified Kunitz trypsin inhibitor 1 (KTI1, Gm01g095000) and KTI3 (Gm08g341500) as two seed-specific TI genes. Mutant kti1 and kti3 alleles carrying small deletions or insertions within the gene open reading frames were created in the soybean cultivar Glycine max cv. Williams 82 (WM82) using the CRISPR/Cas9-mediated genome editing approach. The KTI content and TI activity both remarkably reduced in kti1/3 mutants compared to the WM82 seeds. There was no significant difference in terms of plant growth or maturity days of kti1/3 transgenic and WM82 plants in greenhouse condition. We further identified a T1 line, #5-26, that carried double homozygous kti1/3 mutant alleles, but not the Cas9 transgene. Based on the sequences of kti1/3 mutant alleles in #5-26, we developed markers to co-select for these mutant alleles by using a gel-electrophoresis-free method. The kti1/3 mutant soybean line and associated selection markers will assist in accelerating the introduction of low TI trait into elite soybean cultivars in the future.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122644, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963278

RESUMO

Tyrosinase plays an important role in melanin synthesis. Inhibition against tyrosinase activity has been extensively focused on for pharmaceutical, food, cosmetic, and agricultural purpose. The inhibitory mechanism of scutellarein on tyrosinase was elaborated by coupling enzyme kinetics, multi-spectroscopy and computational simulation. Scutellarein remarkably inhibited tyrosinase activity with an IC50 value of 91 µM. Scutellarein reversibly inhibited tyrosinase in a competitive manner. Fluorescence quenching validated that interaction of scutellarein with tyrosinase occurred to form a complex with a binding constant of 6.11 × 104 M-1. Thermodynamic parameters suggested that scutellarein spontaneously bound with tyrosinase via hydrogen bond and van der Waals force. Three-dimensional fluorescence spectra and circular dichroism spectra revealed that scutellarein induced an obvious conformational change in tyrosinase. Molecular docking result predicted that scutellarein mainly bound with tyrosinase via Arg268 residue. Scutellarein effectively controlled the enzymatic browning of apple slices during storage. This research could give theoretical guiding significance in various application for tyrosinase inhibitors.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/metabolismo , Simulação de Acoplamento Molecular , Cinética , Dicroísmo Circular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
19.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986030

RESUMO

Few-layer graphene was successfully synthesized on copper foil via chemical vapor deposition with methanol as a carbon source. This was confirmed by optical microscopy observation, Raman spectra measurement, I2D/IG ratio calculation, and 2D-FWHM value comparisons. Monolayer graphene was also found in similar standard procedures, but it required higher growth temperature and longer time periods. The cost-efficient growth conditions for few-layer graphene are thoroughly discussed via TEM observation and AFM measurement. In addition, it has been confirmed that the growth period can be shortened by increasing growth temperature. With the H2 gas flow rate fixed at 15 sccm, few-layer graphene was synthesized at the lower growth temperature of 700 °C in 30 min, and at 900 °C growth temperature in only 5 min. Successful growth was also achieved without adding hydrogen gas flow; this is probably because H2 can be induced from the decomposition of methanol. Through further defects study of few-layer graphene via TEM observation and AFM measurement, we tried to find possible ways for efficiency and quality management in graphene synthesis in industrial applications. Lastly, we investigated graphene formation after pre-treatment with different gas compositions, and found that gas selection is a crucial factor for a successful synthesis.

20.
Virol J ; 20(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721152

RESUMO

Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM. Moreover, the human lung xenograft mouse model was used to investigate the anti-SARS-CoV-2 effect of Baf-A1. It was found that Baf-A1 significantly inhibited SARS-CoV-2 replication in the human lung xenografts by in situ hybridization and RT-PCR assays. Histopathological examination showed that Baf-A1 alleviated SARS-CoV-2-induced diffuse inflammatory infiltration of granulocytes and macrophages and alveolar endothelial cell death in human lung xenografts. In addition, immunohistochemistry analysis indicated that Baf-A1 decreased inflammatory exudation and infiltration in SARS-CoV-2-infected human lung xenografts. Therefore, Baf-A1 may be a candidate drug for SARS-CoV-2 treatment.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Xenoenxertos , SARS-CoV-2 , Células Epiteliais Alveolares , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...